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Reversible jump Metropolis-Hastings updating schemes can be used to analyse 
continuous-time latent models, sometimes known as state space models or hidden Markov 
models. We consider models where the observed process X can be represented as a stochas- 
tic differential equation and where the latent process D is a continuous-time Markov 
chain. We develop Markov chain Monte Carlo methods for analysing both Markov and 
non-Markov versions of these models. As an illustration of how these methods can be 
used in practice we analyse data from the New York Mercantile Exchange oil market. In 
addition, we analyse data generated by a process that has linear and mean reverting states. 

Some key words: Challgepoillt model; Reversible jump Markov chain Monte Carlo; Variable dimension 
time-series model. 

1. INTRODUCTION 

Recently, reversible jump Markov chain Monte Carlo methods (Green, 1995) have been 
presented for time series models where the observed process X, conditional on the latent 
or hidden process D, is Markov; see a University of Nottingham technical report by 
F. Ball, Y. Cai and A. O'Hagan for a discussion where D is a continuous-time Markov 
chain, and see Hodgson (1999) and Hodgson & Green (1999) for a discussion where D 
represents a more general Markov process. In this paper, we will extend this methodology 
to a rather general class of switching diffusion models, and apply our results to data from 
the New York oil markets. 

Both Hodgson (1999) and the report by Ball et al. present reversible jump methods 
that are similar to ours. Hodgson (1999) discusses 'shift', 'birth' and 'death' reversible 
jump moves for a two-state latent process, and the Ball et al. report presents similar moves 
for multiple-state latent processes. The main distinction between this paper and other 
related work is the class of models that we consider. We show how our reversible jump 
methods can be used to analyse both Markov and non-Markov versions of these models, 
and we discuss convergence diagnostics and model choice tools for these models. 

In the Markov case. we restrict our attention to the class of models where the observed 

mailto:jcll2@psu.edu


process X = {X,; 0 d t d T )  can be represented as a stochastic differential equation with 
a drift term that is determined by a hidden Markov chain D: 

where W is a Wiener process and D is a continuous-time Markov chain. In the non- 
Markov case, we consider models where the drift of X is a complex function of the past 
sample path and D. In the case where, conditional on the D, X is Markov, as in (1.1), 
filtering methods can also be used to sample from the hidden process D. However, our 
methods extends beyond the Markov case to provide a flexible general purpose technique 
that can be used to sample from D for both the Markov and non-Markov cases. 

For all our models, the hidden Markov chain D can be characterised in terms of a jump 
chain (i,, i,, . . .) and associated waiting times (to, t,, . . .). Conditional on the fact that a 
jump has occurred, the probability that D changes from state ij to i j+,  is given by the 
jump chain transition matrix P, which, together with the inverses of the average waiting 
times ill, is summarised in an infinitesimal generator or a 'Q' matrix. The Q matrix for D 
is given by 

where plj is the (i, j )  element of P,. 
Since X is usually observed over a fixed time interval [0, T I , the number of parameters 

needed to describe a particular realisation of D varies with the number of times that this 
realisation changes state, so that we require reversible jump Markov chain Monte Carlo 
methods. 

The outline for this paper is as follows. In § 2 we give an overview of appropriate 
Markov chain Monte Carlo methods and convergence diagnostics, and we discuss model 
choice tools. The acceptance probabilities for the reversible jump proposals are given in 
Appendix 2. In 5 3 we use these methods to analyse data from the New York Mercantile 
Exchange oil market, and in 5 4 we show how these methods can be extended for non- 
Markov state space models, giving the methods an advantage over filtering-based Markov 
chain Monte Carlo methods. 

2. MODELS, METHODS, DIAGNOSTICS AND MODEL CHOICE 

2.1. Linear hidden Mc~rkov clzain models 
We will begin by specifying a linear hidden Markov chain model. Although these linear 

models are relatively simple, they present a clear framework for discussing the challenging 
task of updating D within the Markov chain Monte Carlo approach. 

A linear hidden Markov chain model has a different drift term for each state of the 
hidden Markov chain: 

where I { , ,  represents the indicator function and where each hii is a constant. To avoid 
problems with identification, we require that 

As an example, we will specify a two-state model. The prior density for the drift term is 
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a constrained bivariate normal density: 

The prior densities for the off-diagonal elements of the Q matrix of D are exponential 
densities with mean 1/P. For all the models we considered, we used hyperparameters that 
corresponded to relatively vague prior specifications. For example, a priori, the drift terms 
were centred at zero, P, = P2 = 0, and had variances three times the size of the variance 
of the observed process, using the assumption that the process followed a Brownian motion 
with a drift equal to zero, that is z1 = z2= 3e2, where 

and tz + 1 is the number of observations of X. For D the a priori average waiting time in 
each state was one-third of the duration of the observed process, 1/P = T/3, and a priori 
D was given equal probability of starting in either state 1 or state 2. 

The likelihood for X, 

is given by the Cameron-Martin-Girsanov formula; see for example Oksendal (1980, 
p. 123). 

The full conditional density for p,  and p2 is given by 

where 

The full conditional density for with i, j = 1, 2 and i += j, is given by 

3LijlD, PI ,  ~ 2 ,  igij+ 1, S: ds + Pi3Lj, X - G a  I{D,=i) 
(2.21 

where gij is the number of times that the Markov chain D jumps from state i to state j 
on [O, T I .  The full conditional density for D is nonstandard and is given by 

Z(DI X, p,, p2, I-,,) K I-;? 1-21exp 



2.2. Markov chain Monte Carlo methods 
We shall use Metropolis-Hastings algorithms to simulate asymptotically from the pos- 

terior distribution; see Tierney (1998) for an introduction to the algorithm at the level of 
generality that we shall need to adopt. We shall require Metropolis-Hastings rules which 
update the unknown parameters, and the hidden Markov sample path. 

The basic Markov chain Monte Carlo algorithm for the scalar parameters of a linear 
model is straightforward. The drift terms can be updated using rejection sampling and 
the jump rates can be updated by sampling directly from (2.2). Since the full conditional 
density of D is nonstandard, non-Gibbs algorithms need to be used to update D. 

We use three different methods for updating D. The first method is an independence 
sampler which ignores the current realisation of D and proposes realisations of D that are 
considerably different, in terms of the posterior density. This sampler tends to result ill 
large but infrequent moves. The other two methods make small modifications to the 
current realisation of D. The second method is a refinement sampler in which one of the 
jump times of D is changed, and the third method is a birth-death sampler in which an 
interval of D is either created or removed. These two samplers tend to result in small but 
frequent moves. The independence sampler has obvious advantages when the posterior 
distribution is multimodal or when a poor initial value of D has been chosen, whereas 
the refinement sampler and birth-death sampler have the advantage of inore efficiently 
exploring the modes of the posterior distribution. 

To illustrate how we use all three samplers, we give the basic Markov chain Monte 
Carlo algorithm for the two-state model and then give an overview of the three samplers. 
A description of the birth-death sampler algorithm is given in Appendix 1 and the accept- 
ance probabilities for all three samplers are given in Appendix 2. It should be noted that 
in practice we chose our initial parameter values, for the basic algorithm, by drawing a 
random sample from their posterior distributions. 

ALGORITHM1 (Tlze basic Marlcov clz~izrz Monte Carlo algorithm). 
Step 1. Select a random stnrting point, Q0 = {p?,,LL;, I-:,, I-;,, D o ] .  
Step 2. Generate a sample for ( p , ,  ~1,).with ~ 1 ,< /1,, using rejection salnpling. 
Step 3. Generate samples for I":, and I-:, from (2.2). 
Step 4. Generate a proposed realisation Y using one of tlze following sub-algoritlzms: 

use tlze irzdepetzderzce sampler witlz probability p,,, 
use the rejiizernerzt sarnpler lvitlz probability p,,, 
use tlze birtlz-death sampler with probability p,,,, 

where PIS4-PRS 4-P B D S =  1 P I S ,  P R S ,  PBDS >0. 
Step 5 .  Calculate the acceptance probability x ;  see Appendix 2. 
Step 6. Witlz probability x let D1 = Y ; otherwise let D1 = D o .  
Step 7 .  Repeat Steps 2-6. 

The independence sampler is straightforward and is based on the prior density of D. 

SUB-ALGORITHM1 (The  itzdeperzderzce sampler). Generate a proposed realisation at 
randolnfiorn the prior densitj) of D conditioned on Q :  

~vlzerefMc is tlze standard density for a continzious-time iVarkov chain. 

Before detailing the refinement sampler, we need to define the jump times and label the 
intervals of D. The ith jump time for D is the ith time that D changes state and is given 
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by = t j . If D has at least one jump time, then [0, TI] is the first interval and [T,,, T I  
is the last interval. The first and last intervals are called external intervals; the remaining 
intervals are called internal intervals. 

The refinement sampler generates a proposed realisation Y by changing the location of 
one of the jump times of the current D. 

SUB-ALGORITHM2 (The basic refirzemelqt sampler). 
Step 1. Randomly select a pomt urziformly from tlze ~rzterval [0, TI :  T'  -Un(0, T). 
Step 2. CIznrzge one of the jump times closest to  T' as follows: 

if T' falls on the Jirst interval, let TI = T'; 
If T' falls otz tlze last ~tzterval, let ?;, = T'; 
if T' fklls on an interval, [ T ,  7 ; .  , I ,  let T,= T' witlz probnbillty $; otlzerwise let 7 ; + , = T'. 

The birth-death sampler sub-algorithm generates a proposed realisation Y by creating 
a new interval, a birth, in the current realisation of D, or by removing an interval, a death, 
from the current realisation of D. 

See Appendix 1 for a detailed description of the birth-death sampler algorithm and for 
a description of the types of birth and death moves that are allowed. 

2.3. Cotzvergetzce diaglzostics 
To help assess when our Markov chains have converged in distribution, we implemented 

the commonly adopted Gelman & Rubin statistic (Gelman & Rubin, 1992) and the L' 
statistic, which is a diagnostic that we introduce specifically for this context to assess the 
mixing of the hidden Markov chain. For a general review of convergeilce diagnostics see 
Cowles & Carlin (1996) or Brooks & Roberts (1999). 

The L' statistic monitors the behaviour of D for m 3 2 independent realisations of the 
Markov chain Monte Carlo Markov chain. When the Markov chain components from 
all independent Markov chain Monte Carlo Markov chains begin to exhibit similar behav- 
iour, there is evidence that the Markov chain component, D, may have converged in 
distribution. Our diagnostic is based on 

defined as the time that two Markov chains Dl  and D ,  are in different states. Given 6, 
the L' statistic, 

is the average distance between the Markov chain elements. When the L' statistic begins 
to exhibit stationary behaviour, we conclude that the marginal densities of D have 
converged ill distribution. 

2.4. Model choice 
For model choice we calculate Bayes factors and other tools that are based on an 

in-sample estimatioi~ of X. 
Given a set of data X = {X, ,:T =  t,,> . . . > to = 0) and results from a Markov chain 



Monte Carlo analysis, 2 is calculated as follows: 

where 6gt ,  is the expected change in the process X over the interval [ti-,, ti], taking the 
expectation with respect to the posterior distribution of the parameters together with the 
incremental distribution of X. For a two-state model the expected change is given by 

where 8-, represents all of the model parameters except for D. A plot of X and 2 ,  which 
we call the visual goodness of fit, offers a simple way of assessing a model. 

We also calculate a traditional R~statistic as a crude measure of the amount of variation 
in the data explained by the model and we calculate the average L1-distance, z l ,  between 
2 and X, where 

3. DYNAMICSOF THE NEW YORK MERCANTILE OILEXCHANGE MARKET 

3.1. Tlze data and model assumptions 
We now use our methods to investigate the dynamics of the price of a New York 

Mercantile Exchange future contract for crude oil to be delivered to New York harbour 
in June 1995; see Fig. l(a). The price was recorded at ten-minute intervals during trading 
hours from 4th-23rd May 1995, and was reported in U.S. cents per barrel. The data reveal 
price changes over ten-minute intervals, intra-day price movements, and price changes 
overnight or over a weekend. 

Time (10 min. intervals) Time (10 min. intervals) 

Fig. 1. U.S. oil market example. (a) shows oil price 4-23 May 1995. observed every 
10 minutes and reported in U.S. cents per barrel. (b) shows quadratic variation 

process for the data in (a). 

We analyse the intra-day data using several linear hidden Markov chain models. For 
each analysis we assume that the price at the beginning of a trading session is the same 
as the price at the end of the last session or we ignore the overnight price movements. 
This assumption is reasonable for this dataset because the overnight price movements are 
of the same order of magnitude as the intra-day price movements. When the overnight 
price movements are significant, several approaches can be used to model these price 
movements. For example, overnight movements could be modelled as normal increments 
with a mean and variance that depends on the hidden Markov chain D. 

Our other major assumptions are that the instantaneous volatility is constant and that 
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it is reasonable to estimate a2 using (2.1). This estimate of the volatility is calculated a 
priori and then used as a covariate. The assumption of constant volatility is reasonable 
over relatively short time periods; see Polson & Roberts (1994) for further discussion of 
issues related to heteroscedasticity and estimatioil of volatility from discretely observed 
pairs. In particular, they introduced the following informal diagnostic of heteroscedasticity. 
Consider Q, = Jk a: dt,  which is approximated by 

This estimate of the quadratic variation process can be used as a visual diagnostic for the 
assumption of constant variance, under which we expect Q, to be approximately linear. 
The quadratic variation for the oil data is given in Fig. l (b ) ;  except for a brief period 
where the oil price drops sharply, the volatility appears relatively constant. During the 
period when the slope of Q , ~increases significantly, between observations 124 and 136, all 
three of our models identify a negative drift that is strong enough to inflate Q, artificially. 
If Q, is adjusted for this drift term over the period in question then the slope of Q, becomes 
essentially constant over the entire dataset. 

The assumption that the observations of X are dense enough to justify using (2.1) can 
be investigated by calculating the ratio of the estimate of the volatility over the estimate 
of the drift squared. If this ratio is large, when compared to 1, we assume that (2.1) gives 
a reasonable estimate of the volatility. For this dataset (2.1) results in 82= 8.35797. The 
ratio of volatility over each drift is given in Table 1. This ratio is less than one for the 
strongest decreasing drift for each model. Since the price tends to stay in this decreasing 
state for a short period of time, between 80 and 160 minutes depending on the model, we 
assume that the impact of the first drift is unimportant. The ratio for the remaining drifts 
is greater than one, which suggests that these drifts have little or no impact on the volatility 
estimate. These ratios, together with the estimates of the quadratic variation process in 
Fig. 1, suggest that it is reasonable to estimate the volatility using (2.1). 

Table 1. U.S. oil nzarket example. Ratio of estimates of 
volatility over ~?~/f l?.As this ratio increases, the 
i t~ juence  of the d r f t  on the estimate of the colatility 

decreases 

Ratio Two-state model Three-state model Four-state model 

3.2. il4odel choice 
The Bayes factors comparing the two-state to the five-state linear hidden Markov chain 

model with the random walk model, Brownian motion without a drift, were calculated 
using the fourth and final sampling based estimator proposed by Newtoil & Raftery 
(1994). The logarithms of these Bayes factors are reported in Table 2. 

The Bayes factors give very strong support for all the hidden Markov chain models 
when compared with the random walk model. Given the Bayes factors for the competing 



Table 2. U.S. oil market example. Bayes fac- 
tors, BF, on a log scale with respect to the 
random walk model and R2 and Z1 statistics 

for the two-state-Jive-state models 

Model l o g ( n ~ )  R 2  L' 

linear models, we conclude that the four-state model is the one to choose. The four-state 
model is chosen over the five-state model because, although the Bayes factor of 1.5 between 
the two models supports the five-state model, in our view this is not strong enough to 
justify the increased complexity of the five-state model. This conclusion is supported by 
the visual goodness of fit, R2 and the Z1 diagnostics; see Fig. 2 and Table 2. 

(a) Two-state model (b) Three-state model 

t . . . . . . .. .. . 

8 1930 

100 300 500 100 300 500 

Time (10 min. intervals) Time (10 min. intervals) 

(c) Four-state model (d) Five-state model 

-
?5 1930 

100 300 500 100 300 500 

Time (10 min. intervals) Time (10 min. intervals) 

Fig. 2. U.S. oil market example. Visual goodness of fit  for the two-state-five-state models. 

Solid lines, oil price in U.S. cents per barrel; dotted lines, visual goodness of fit. 


3.3. Parameter estimates for tlze four-state model 
The posterior density for the hidden four-state Markov chain D is summarised by 

plotting, for each point in time, the probability of being in each state; see Fig. 3. 
As with all the linear hidden Markov chain models, the four-state model identifies a 

strong decreasing state that lasts for a short period of time; see Table 3 for estimates of 
the drifts and waiting times. These data also exhibit a weak decreasing state, a flat state 
and an increasing state. Given that a jump occurred, the probabilities of jumping between 
each of these states were estimated and are reported in Table 4. 

This study offers interesting insights into the dynamics of the crude oil market over the 
period that the data were observed. The four-state model indicates that, after the market 
experiences a negative correction, a crash, the market has roughly an equal chance of 
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(a) 

Time (10 minute intervals) 

Time (10 minute intervals) 

Time (10 minute intervals) 

Fig. 3. U.S. oil market example. (a) displays oil prices, observed every 10 minutes and 
reported in U.S. cents per barrel. For the four-state model, (b) shows the probabilities 
of being in the decreasing states, states 1 and 2, and (c) shows the probabilities of being 

in the increasing states, states 3 and 4. 

Table 3. U.S. oil market example. Summary statistics for 
tlze four-state model slopes or drifts, p i ,  given in U.S. cents 
per 10 r?zinutes, and inverses of the expected waiting times, 

Aii, gicen in (10 minutes)-' 

Point estimate Standard Point estimate Standard 
State of k1, deviation of iLii deviation 

jumping to any of other states. Alternatively, when an increasing state, a rally, finishes, 
the market tends to 'land softly' or tends to not change to the strong decreasing state. 
This soft landing behaviour holds for both the flat and increasing states. 



Table 4. U.S. oil market example. Estimate 
of tlze jump chain transition matrix for the 

four-state model 

State 
State 1 2 3 4 

We realise that this study is based on a small sample and that these observations about 
the dynamics of the oil market may or may not apply to larger sets of data. 

3.4. Convergence diagnostics 
We calculated the convergence diagnostics mentioned in # 2.3, based on five replications 

of the Markov chain Monte Carlo Markov chain for each analysis. The convergence 
diagnostics were similar for each analysis, and we only report the convergence diagnostics 
for the four-state model. 

Plots of the Geltnan & Rubin (1992) statistics and the L' statistic, given in Fig. 4, 
suggest that the four-state model appears to have converged by around 15 000 iterations. 

( 4  (b) (c) 

-GR drift 1 
.---CR drift 2 
...--G R  drift 3-- GR drift 4 

1 12 23 0 10 20 30 1 12 23 

Iterations ( x 10-7 Iterations ( x lo-') Iterations ( x 10-7 

Fig. 4. U.S. oil market example. For the four-state model: (a) shows Gelmail & Rubin (1992), GR, statistics 
for the inverse of the waiting times, G R  wait ILGR wait 4; (b) shows Gelman & Rubin statistics for the drift 

terms, G R  drift 1-GR drift 4; (c) shows the L1 statistic. 

In addition, the acceptance rates for the two-, three- and four-state models are given in 
Table 5. As expected, the acceptance rates for the independence sampler are very low as 

Table 5. U.S. oil market example. Acceptance rates for 
the two-state, three-state and four-state models 

Acceptance rates 

Two-state Three-state Four-state 


model illode1 model 


Independence sanlpler 0.0002 1 1 0.000026 0.0001 89 
Refinement sampler 0.006346 0.062231 0.220441 
Birth-death sanlpler 0.003830 0.026512 0.098163 
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a consequence of the algorithm's ambitious global proposals. However, the refinement 
sampler and birth-death sampler exhibit higher and reasonable acceptance rates, even 
though the proposed moves can still substantially alter the hidden Markov sample path 
in one iteration. 

4. NON-MARKOVMODELS 

4.1. Model description 
Our methods can be extended and used to analyse a wide range of hidden Markov 

models and hidden non-Markov models. For example, these methods can be extended for 
a hidden non-Markov model, where D is a continuous-time Markov chain and X is either 
a linear diffusion or an Ornstein-Uhlenbeck process with a level of attraction that depends 
on a past level of X; see Gksendal(1980, p. 100) for a discussion of the Ornstein-Uhlenbeck 
process. 

The It6 diffusion associated with this linear Ornstein-Uhlenbeck inodel is given by 

where D is an m-state Markov chain and where 

t,,z(t)= max {s: dDs =/= 0, D,. = m (s < r ,< t)] 
s < t  

is the most recent time that D jumped to the Ornstein-Uhlenbeck state. The linear 
Ornstein-Uhlenbeck model switches between a collection of linear diffusions and an 
Ornstein-Uhlenbeck process where the level of attraction for the Ornstein-Uhlenbeck 
state is the value of X at the time that D enters the Ornstein-Uhlenbeck state. 

The linear Ornstein-Uhlenbeck model is non-Markov because Xtn1(,,is a function of X 
at the last time that D enters the Ornstein-Uhlenbeck state, which is a random time in 
the past. 

4.2. Markov chain Monte Carlo methods 
The linear Ornstein-Uhlenbeck model can be analysed using a modification of the basic 

algorithms presented in 5 2. The modifications to the algorithm and each of the sub- 
algorithms are straightforward. The only substantial modification required concerns the 
formula for calculating the acceptance probability, a, associated with modified versions 
of the refinement sampler and birth-death sampler sub-algorithms; see Appendix 2. The 
acceptance probabilities need to be modified to accommodate proposed changes to D 
where the beginning of an Ornstein-Uhlenbeck interval is changed. As an example we 
give the acceptance probability for a proposed refinement move where the beginning of 
an Ornstein-Uhlenbeck interval is modified: 

a(D,Y) = min {:::,:::), I}, 


where 8-, stands for all parameters except for the hidden Markov chain D and 



Appropriate modifications to the acceptance probability for a modified birth-death sam- 
pler sub-algorithm can be arrived at using a similar approach. 

4.3. Analysis of simulated data 
We generated three-state linear Ornstein-Uhlenbeck data where D enters an Ornstein- 

Uhlenbeck state at three different times. We then analysed these data using a three-state 
Ornstein-Uhlenbeck model and a three-state linear model, showing that the linear model 
has difficulty in identifying the mean reverting state. 

For both analyses we used appropriate versions of the independence sampler, refinement 
sampler and birth-death sampler sub-algorithms to update D. The visual goodness of fit 
and the probabilities of being in the decreasing state and the Ornstein-Uhlenbeck state 
for the three-state linear Ornstein-Uhlenbeck model, and the visual goodness of fit and 
probabilities of being in the increasing and decreasing states for the three-state linear 
model are given in Fig. 5. In addition the model choice tools for both models are given 
in Table 6. 

It is clear from the visual goodness of fit plot, in Fig. 5, that the three-state linear model 
has difficulty distinguishing between the Ornstein-Uhlenbeck state, which ideally should 
be treated as a state with drift equal to zero, and the decreasing state. This is not surprising, 
given that the process that generated the data exhibits both linear trending behaviour and 
mean reverting behaviour. While the generating process is in the mean reverting state the 
process occasionally moves away from and then back towards a fixed level of attraction, 
creating behaviour which could look like a collection of short-term linear trends. Since 
the linear model does not have a mean reverting component, the short term trends from 
the Ornstein-Uhlenbeck state compete with the longer trends of the decreasing and 
increasing states. This 'competition' can make it difficult for the linear model to identify 
the Ornstein-Uhlenbeck state properly. 

In contrast, the linear Ornstein-Uhlenbeck model clearly identifies all three of the states, 
see Fig. 5, and, as measured by our model choice tools in Table 6, there is very strong 
evidence, with a Bayes factor of exp(32.35), for choosing the linear Ornstein-Uhlenbeck 
model over the linear model. 

In conclusion, if data are generated by a process that has linear and mean reverting 
states, a linear hidden Markov chain model will fit the data better than a model with a 
constant drift, but a linear Ornstein-Uhlenbeck model will be better at identifying the 
mean reverting state and will describe the data better than either a model with a constant 
drift or a linear hidden Markov chain model. 
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(a) Level of simulated data 

Simulated data 
L'GF LOU model 
VGF linear model 

I I I I I I I 

0 100 200 300 400 500 600 

Time 

(b) LOU inodel 

(c) Linear inodel 
I I 

I I I I I I I 

0 100 200 300 400 500 600 


Time 

Fig. 5.Simulated data example using three-state linear Ornstein-Uhlenbeck, LOU, model and linear 
model. (a) shows levels of simulated data and visual goodness of fit, VGF. (b) and (c) show probabilities 
of being in a decreasing state, pr(decr), flat state, pr(flat) or Ornstein-Uhlenbeck state, pr(ou), (b) for 

three-state linear Ornstein-Uhlenbeck model, and (c) for three-state linear model. 

Table 6 .  Simulated data example. Bayes 
factor, B F ,  on a log scale with respect to the 
mndonz wallc nzodel, and R2 and z2statistics 
for the three-state linear Ornstein-Uhlenbeck, 
LOU,  model and for the three-state linear 

model 

Model log(^^) R2 L1 
Three-state LOU 62.62 0.945 5.28 

Three-state linear 30.37 0.805 9.92 




APPENDIX1 

The  birth-death sarnpler algoritlznz 

First let 9, =xi,j$ijbe the number of times a Markov chain D changes state over an interval 
[0, T I . As mentioned in 5 2, the birth-death sampler sub-algorithm generates a proposed realisation 
Y by creating a new interval in the current realisation of D, or by removing an interval from the 
current realisation of D. Three different types of birth are allowed, a left birth, a right birth and a 
middle birth, and three different types of death, a left death, a right death and a middle death; 
see Fig. 6. 

For a two-state model, most of the birth modifications are the same as a refinement modification. 
For example, a left birth on any interval except for the first interval and a right birth on any 
interval except for the last interval reduce to a refinement modification. For models with more 
than two states, some of the birth modifications are the same as a refinement modification. For 
example, a left birth reduces to a refinement modification when the state of the new interval is the 
same as the state of the interval immediately to its left. A similar statement can be made for 
right births. 

In order to distinguish clearly between the refinement sainpler and the birth-death sampler sub- 
algorithms, we restrict the birth-death sampler so that it cannot propose births that would result 
in a refinement modification. This restriction will in turn result in two different versions of the 
birth-death sampler sub-algorithm, one version for models with two states and another version for 
models with more than two states. Since these sub-algorithms are similar we will only give the 
version for models with more than two states. 

SUB-ALGORITHM3 (The  birth-death scrmpler for three or nzore states). 
Step 1. Select a birth with probability p = (f)I{,D,o}+ ( l ) I { ,D=o} ;otherwise select a death. 
Step 2. Select tlze interval to  be nzod$ed by generating a randonz tirne, T '  -Un(0, T). The  interval 

that contaiizs T'  is the interval that will be modijied. 
Step 3.  If a birth is selected in Step 1 use (a) ;  otherwise use (b)-(d) .  

( a )  	I f  a birth is selected, with equal probabilities create the birtlz interval using a nziddle birth, 
n left birth or a right birth. For rr nziddle birtlz generate TI ' - U n ( T ,  7 ; + , ) ,  and let 
[min{T1, T"),  max{T1, T")] beconze the birth interval. For (1 left birth let [ T , T'] become 
the birth interval. For a right birth let [T', 7;+,] becolne the birth interval. 

( b )  I f  the ,first interval is to  be re~noved, absorb it into tlze second interval. 
(c )  If the last interval is to  be rernoved, absorb it into the next to  last interval. 
( d )  I f  an internal interval is to  be removed, with equal probabilities absorb it into the interval 

irnrnediately preceding or inzmediately following. 
Step 4. I f  a birth is selected in Step 1, choose a new state by  excluding the state of tlze interval 

selected in Step 2 and by excluding any states which would result in a rejirzernent type nzove, and then 
select one of the remaining states with equal probabilities. 

Acceptnnce probabilities 
This appendix contains the acceptance probabilities for Sub-algorithms 1 and 2 presented in 3 2 

and for Sub-algorithm 3 presented in Appendix 1. In each case the acceptance probability r is a 
function of the current values of the scalar parameters, the data and the competing realisations of 
the hidden Markov chain. 

The  independence sampler. The acceptance probability for Sub-algorithm 1 is given by 

u(D,  Y )= min 

The  rejirzement sainpler. Recall that we call the first and last intervals of a Markov chain D 
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external intervals and we call any remaining intervals internal intervals. In addition, recall that 9, 
represents the number of times D changes state on the interval [0, T I  and that represents the 
time when the ith jump occurs. 

The acceptance probability for Sub-algorithm 2 is given by 

where a = 4 if an external interval is selected and 9, > 1, a = 2 if an internal interval is selected 
and TI or ?;, is modified, a = 1 for all other cases, and T,  is the first jump time of D and 7;, is the 
last jump time of D. 

The birth-death sampler. The following notation helps simplify the presentation: 9, is the number 
of times D changes state; t, is the length of the selected interval; t ,  is the length of the new birth 
interval; t, is the length of the interval that results from a death; T,- and T,, are the times at which 
the selected interval stops and starts; T,- and T,, are the times at which the birth interval stops 
and starts; i is the state of the selected interval; j is the state of the interval preceding the selected 
interval; 12 is the state of the interval following the selected interval; 1 is the state of the birth interval; 
and m is the number of elements in the state space of D. 

The acceptance probability r for the birth-death sampler algorithm can be written in terms of 
the product of ratios of likelihoods, prior densities and proposal measures. This acceptance prob- 
ability is given by 

a(D, Y) = min 
qp(Y D)ny(YIX, Q-Y) 

q,(D, Y)nD(DlX, Q - D l '  

where 

We will proceed by defining each of these ratios for models with three or more states. First we will 
give the ratio of proposal densities. For birth modifications, 

;tb(in - I), for 9, = 0, left or right birth, 
3
$,(m -2), for 9, > 0, left or right birth of an internal interval, 

3tb(m- I) ,  for 9, > 0, birth of an external interval, 

t ( - 1 for 9, = 0, middle birth, 

3t,tb(m - I ) ,  for 9, > 0, middle birth. 

For death modifications, 

+{ts(m- I)}-', for 9, = 1, left or right birth, 

3{tS(m- 2))-', for 9, > 1, left or right death of an internal interval, 

{ ( n- 1 ) for 9, > 1, death of an external interval, 

${t,t,(m - I)}-', for 9, = 2, middle death, 

i{tdts(m- I)}-', for 9, > 2, middle death. 

Next we will give the ratio of the prior densities for the two competing Markov chains. For 
birth modifications, 

i j i lx i - ) t b  for left birth not the first interval, 

A/i  e x ~ { ( ~ i- i/)tb}2 for birth of the first interval, 
p (y l  Q) 

)bilili - for middle birth, 
P(D I Q) 

ex^{(?-^ %/)tb}, 
) k i l i l k i i k 1  exp{(ii- ),,)tb}, for right birth not the last interval, 

i i /  exp{(%i-21)tb1, for birth of the last interval. 
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For death modifications, 

ijkl-]; exp { ( A i  i j ) t , } ,  for left death not the last interval, '2;' -

iJ;' exp { ( A i- ).j)ts}, for death of the last interval, 
P(Yl  Q )  

1 ;  A ' { ( A -A j t  for middle death, 
P(D I Q )  

AjkA1;13,;1 exp{()., - ),,)t,}, for right death not the first interval, 

2;' e x p { ( i i- l.,)t,}, for death of the first interval. 

Finally we will give the ratio of the likelihoods of X given the two competing Markov chains. 
For birth modifications, 

L ( X I Y ,1-11>.. . , prn)= d x ,  - (1-1; - /-l?ltbexp {ST:: (7) 
L(XID>1-11, . . . , 1-111,) 202 

For death modifications, 

L ( X I Y , ~ I , .. . ,pin) = d x ,  - (1-1; -exp {Sz(y) / - l f ) t s  

L (X  ID3 1-11 3 . . . , 1-11,,) 202 

where =j for a left or middle death and i' = k for a right death 
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